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The human voice is the carrier of speech, but also an
'auditory face’ that conveys important affective and
identity information. Little is known about the neural
bases of our abilities to perceive such paralinguistic
information in voice. Results from recent neuroimaging
studies suggest that the different types of vocal infor-
mation could be processed in partially dissociated func-
tional pathways, and support a neurocognitive model
of voice perception largely similar to that proposed for
face perception.

The human voice is the most important sound of our
auditory environment. We probably spend more time
everyday listening to voices than to any other sound,
and our ability to analyze and categorize information
contained in voices plays a key role in human social
interactions. Voice is of course the carrier of speech, but
there is more to voice than ‘simply’ speech. Speech
appeared recently in evolution as a particularly complex
and abstract use of voice by the human species [1,2].
However, vocalizations were prominent in the auditory
environment of vertebrates for millions of years before
speech emerged. Accurately perceiving the information
contained in vocalizations from conspecific individuals,
prey or predators is of crucial importance for survival. Like
many other species, we are endowed with abilities to
extract ‘paralinguistic’ information in voices (see Box 1).
For example, even when speech information is not
available in a voice — because it is a baby cry, or a
cough, or heard through a wall or at a distance — we are
still able to extract valuable information about the identity
and the affective state of the person who produces the
vocalization.

The abilities involved in perceiving paralinguistic
information in voices — or ‘voice perception’ abilities —
have been far less investigated than speech perception,
and little is known about their neural bases. Results from
recent neuroimaging studies, however, suggest that the
different types of vocal information could be processed in
partially dissociated functional pathways. Because speech
emerged when cerebral mechanisms already existed for
analyzing other types of vocal information, studying
speech perception in the broader context of voice percep-
tion might provide a useful perspective.
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The voice: an "auditory face’

The voice not only contains speech information, it can also
be viewed as an ‘auditory face’, that allows us to recognize
individuals and emotional states. Voices, as faces, are
characterized by a unique combination of physical features
related to the unique configuration of the human vocal
apparatus (see Box 2). As with faces, minute inter- and
intra-individual variations around that generic structure
carry useful information, which can be divided in three
broad categories: speech information, but also identity
information and affective information [3].

The voice carries important identity information in
‘invariant’ or ‘static’ features such as timbre — directly
influenced by physical factors such as age and gender —
and also in ‘dynamic’ information, such as patterns of
pronunciation specific to a region (accent) or to a person —
there are such unique laughs... Listeners are generally
accurate at determining the gender of the speaker [4,5]
and his/her approximate age [6,7]. The ability to judge
other physical characteristics such as height, weight,
racial group or even psychological characteristics, such as
trustworthiness, is more controversial [8]. Our ability to
use identity information culminates with speaker recog-
nition: even after long periods of time, we can recognize
persons from their voice with surprising accuracy [9,10].

The voice also contains affective information: as with
faces, voices are directly influenced by the speaker’s
affective state. The modification of acoustic parameters
induced by autonomic influence and specific patterns of
muscular contraction corresponding to various affective

Box 1. Ontogenesis and phylogenesis of voice perception

Human babies cannot talk or understand speech, yet they are able to
recognize voice. Experiments measuring changes in heart rates in
neonates during presentation of different voices demonstrate an
ability to discriminate voices, and to recognize the voices of their
mother and father [72,73]. This ability is apparently even present in
term fetuses before birth [74,75].

Speech perception might be unique to humans, but other voice
perception abilities exist in other species. For example, the ability to
identify conspecific individuals based on their vocalizations has been
demonstrated in macaques [76,77]. A particularly striking example of
vocal recognition is the case of the northern fur seal: notonly do pups
and mothers have the ability to recognize each other’s vocalizations
during the breeding season, despite the large population of the
colony, but they are also able to retain these memories for at least 4
years [78]; this learning appears to occur as rapidly as the first 2-5
days of life [79].
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Box 2. Variability in voice quality

The voice is the result of a source in the larynx filtered by the supra-
laryngeal vocal tract (‘source/filter theory’ [2,80]). The periodic
opening and closing of the vocal folds in the larynx produces a
buzzing sound with a characteristic waveform, that determines the
fundamental frequency (f0) of phonation — as well as a variable
amount of aspiration noise that contributes to the ‘breathy’ and
‘whispery’ qualities of voice. Besides the modal register used in
normal speaking or singing, the larynx can also be used in the ‘fry
mode’ — with lowest f0 and sounding like growling or groaning — and
in the ‘falsetto mode’ — which sounds thinner and can produce the
highest notes. The vocal tract can be viewed as a complex mobile
filter that enhances certain frequencies of the laryngeal source and
attenuates others. Enhanced frequencies, called formants, depend
both on the size of the vocal tract — correlated to individual body size,
unlike fO [15] — and on its shape, determined by the configuration of
the articulators.

Gender and age differences in size of the larynx and vocal tract
strongly influence voice quality: men have lower average fO and
formant frequencies — although range of f0 largely overlap for men
and women. Women use their vocal folds in a more open
configuration than men, leading to a higher ratio of low to high
frequencies and more aspiration noise [81-83]. Cultural factors and
vocal habits also play a major role in shaping voice quality. For
example, gender can be well identified from voice alone in pre-
pubertal children even though there are no known sex differences in
the anatomy of the larynx and vocal tract at this age [84,85].

states allow us to gather important information on a
person’s emotional and motivational state. Perception of
this information in voice has mostly been studied in the
context of speech [11]. Emotional prosody — a set of
acoustic parameters of speech directly influenced by affect
such as mean amplitude, segment and pause duration,
mean fundamental frequency (f0) and fO variation -
allows the listener to infer much of the speaker’s affective
state [12]. Non-speech interjections — such as laughs,
cries, screams and moans — also contain rich affective
information, and can be viewed as the auditory equivalent
offacial emotional expressions (that most often accompany
them). As in the case of identity information, affective
information can be contained both in ‘static’ features —
such as the characteristic timbre of a screaming voice — or
in more ‘dynamic’ features, such as the melodic contour of
an utterance.

Importantly, vocal features can carry more than one
type of information. Speech formants are a good example
because they carry both speech and identity information.
Formants correspond to the frequencies that are amplified
by supra-laryngeal filtering and convey important pho-
netic information: most voiced phonemes can be approxi-
mated well by synthesizing sounds with energy at formant
frequencies [13]. Although they lack vocal quality, ‘car-
icatures’ of speech sentences composed of pure tones at the
first three formant frequencies (‘sine-wave speech’) can be
understood well [14]. Formants also carry important
identity information: they are directly related to the size
of the vocal tract and can therefore provide estimates of
body size [15], and familiar speakers can be identified from
sine-wave analogues of their vocalizations [16].

In the domain of face processing, functional models have
suggested a partial dissociation of the neural processing of
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these three types of information. It is tempting to suggest
that the neural substrate for processing vocal information
could be organized following similar principles, and that
speech, affective and identity information in voice could be
processed in partially dissociated functional pathways (see
Box 3). In the next section, we review recent neuroimaging
studies of paralinguistic processing of voice, with empha-
sis on the less-explored field of speaker recognition.

Neural correlates of voice perception

Perception of speech information

Most neuroimaging studies [21—24] in the voice domain
have investigated some aspects of the functional archi-
tecture involved in speech perception. These studies,
reviewed elsewhere [17—20], have outlined the specific
involvement in speech perception of bilateral, non-primary
regions of the superior temporal cortex, both posterior
(planum temporale) and anterior to Heschl’s gyrus,
extending inferiorly to the middle and anterior parts of
superior temporal sulcus (STS). Several studies have
suggested a dissociation between middle STS regions,
more responsive to the presence of speech but not to the
meaning (e.g. response to backwards speech but not to
understandable modulated noise), and more anterior
regions of the left STS/superior temporal plane, which
seem to be more involved in comprehension, even from an
input with a much degraded acoustic structure.

Perception of vocal affective information

Fewer studies have used neuroimaging techniques to
investigate the perception of affective information in voice.
Most of these measured brain activity during stimulation
with speech stimuli in which prosody was manipulated in
order to portray various emotional states. Studies using
PET [25] or fMRI [26—28] generally emphasize the greater
activation of the right temporal lobe and right inferior
prefrontal cortex when attention is directed to emotional
prosody, confirming earlier clinical work [29,30]. More
recently, the neural bases of emotional perception in voice
were studied outside the context of speech by using
affective nonverbal vocalizations such as laughs, cries,
groans and other more primitive vocal expressions of
emotion. PET [31,32] and fMRI [33] studies have
suggested the importance of structures such as the
amygdala and anterior insula in processing vocal emotion.

Perception of identity information: speaker recognition

Relatively little is known about the neuronal bases of
speaker perception and recognition. Several clinical
studies have documented cases of brain-lesioned patients
with a deficit in speaker discrimination or recognition
[34—39]. These studies generally show that deficits in
discriminating unfamiliar speakers or deficits in the
recognition of familiar speakers (‘phonagnosia’) can be
dissociated, but both seem to occur more often after lesions
in the right hemisphere. Importantly, a double dissociation
between speech perception and speaker recognition has
been demonstrated by cases of preserved speech percep-
tion but impaired speaker recognition as well as cases of
aphasia with normal voice recognition [35]. This supports
a model of the organization of voice processing in which
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Box 3. A model of voice perception
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We propose to use Bruce and Young’s model offace perception [86] as a
framework for understanding the perceptual and cognitive processes
involved in voice perception (see Figure I). After low-level analysis in
subcortical nuclei and regions of primary auditory cortex (A1), vocal
stimuli are further processed in a stage of ‘structural encoding’ —
probably involving bilateral regions ofthe middle STS close to A1. Vocal
information processing might then be dissociated in three functionally
independent systems: (i) analysis of speech information, involving
anterior and posterior STS as well as inferior prefrontal regions
predominantly in the left hemisphere; (ii) analysis of vocal affective
information, involving temporo-medial regions, anterior insula, and
amygdala and inferior prefrontal regions predominantly in the right
hemisphere; (iii) analysis of vocal identity, involving ‘voice recognition
units’ — probably instantiated in regions of the right anterior STS — each
activated by one of the voices known to the person, and a subsequent
supra-modal stage of person recognition (‘person identity nodes’).
These three processing pathways are proposed to interact with
homologous pathways in the face processing architecture, in a supra-
modal stage of information processing.

This model predicts functional dissociations analogous to those
observed or proposed for faces: patients should in principle be found
with a dissociation between impaired processing of one type of vocal
information and normal processing of the two other types of vocal
information. Some of these dissociations have already been documen-
ted (e.g. double dissociation between receptive aphasia and phonag-
nosia) but others are still to be demonstrated. Standardized batteries of
evaluation of voice perception abilities investigating speech as well as
affect and identity perception would constitute a desirable tool.

Despite the proposed functional dissociation, the three pathways are
clearly not wholly independent. During the normal processing of vocal
information, cortical regions involved in processing the different types
of vocal information are likely to interact to build increasingly abstract
representations. It is only at the highest levels of the architecture that
representations for one type of information would become independent
of sources of variability related to other types of information. For
example, the ‘voice recognition units’ are supposed to be activated by
the voice of one individual regardless of the speech content or the
emotional tone of the vocal input.

| General low-level auditory analysis |

| General low-level visual analysis |

;

;

| Voice structural analysis |

| Face structural analysis |

Vocal
speech analysis

Facial
speech analysis

| Vocal affect analysis |<- ———————— ->| Facial affect analysis |
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Figure I. A model of voice perception. The right-hand part of the figure is adapted from Bruce and Young’s model of face perception [86]. The left-hand part proposes a
similar functional organization for voice processing. Dashed arrows indicate multimodal interactions.

speech and identity information are processed in partially
dissociated cortical regions (see Box 3).

Only few neuroimaging studies have investigated the
perception of identity information. Imaimuzi and col-
leagues [40] were the first to use PET to examine patterns
of cerebral activity induced by speaker identification.
Subjects were scanned while performing a forced-choice
identification of either the speaker or the emotion in non-
emotional words pronounced by four actors with four
different emotional tones. They found that in both hemi-
spheres, the anterior temporal lobes were more active
during speaker identification than during emotion identi-
fication [40]. In a subsequent study [41], the same group
scanned normal volunteers with PET while they per-
formed a familiar/unfamiliar decision task on voices from
unknown persons and from their friends and relatives. A
comparison task consisted of deciding whether the first
phoneme of sentences pronounced by unfamiliar speakers
was a vowel or a consonant. The results showed that
several cortical regions, including the enthorinal cortex
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and the anterior part of the right temporal lobe, were more
active during the voice familiarity task. Interestingly, the
amount of activity in the right anterior temporal pole was
found to correlate positively with the subjects’ perform-
ance at a speaker identification task administered just
after scanning.

Von Kriegstein and colleagues [42] used fMRI to
measure brain activity during identification tasks directed
either to the speaker’s voice or to the verbal content of
sentences in German. They found that the right anterior
STS and a part of the right precuneus were more active
when the identification task was focused on the speaker’s
identity (Figure 1), whereas a left middle STS region was
more active in the reverse comparison. Thus, although the
vocal stimuli were similar in the two conditions, directing
attention to vocal identity or speech content was found to
modulate activity in the STS regions. A convergent finding
was obtained by Belin and Zatorre [43] in an fMRI study
with an opposite design. There, two conditions shared a
common passive listening task but blocks of vocal
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Figure 1. Cortical sensitivity to speaker’s identity. (a) Cortical regions showing
decrease in neuronal activity with repetition of the speaker’s voice, shown in color-
scale on axial (top) and sagittal (middle) slices through the subjects’ mean anatom-
ical image. (Reproduced with permission from [43].) (b) Rendering on a
reconstructed cortex of regions showing greater activity (red) when attention is
directed to speaker’s voice compared with verbal content. (Reproduced with per-
mission from [42]). Note similarity of outlined regions despite difference in
paradigms.

stimulation were composed either of the same syllable
spoken by 12 different speakers or of 12 syllables spoken by
the same speaker — thus repeating either speaker or
syllable. Only one region of the auditory cortex, in the right
anterior STS, showed reduced activity when different
syllables were pronounced by the same voice as compared
with different voices saying the same syllable (see
Figure 1). This reduced response to a same voice was
interpreted as an adaptation response by neuronal
populations sensitive to idiosyncratic acoustic features of
a speaker’s voice.

Thus, there is clear converging evidence for an
important role of anterior temporal-lobe regions of the
right hemisphere, particularly right anterior STS regions,
in processing information related to speaker identity. This
is consistent with recent models of the organization of the
primate auditory cortex [44,45] in which a ventral ‘What’
pathway, homologous to the similar pathway in the visual
system [46], would be specialized in recognition of auditory
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objects, and in particular, individual voices. Note, the STS
is a long, heterogeneous structure: cyto-architectonic and
connectivity studies in the rhesus monkey have demon-
strated a division of the STS into several uni- or polymodal
areas organized in a precise sequence of reciprocal
connections with one another and with other regions of
the cortex [47]. Thus, the various STS activations observed
in neuroimaging studies probably correspond to several
functionally distinct regions.

Face-voice integration

The integration of information from faces and voices is
known to affect the processing of unimodal information.
The McGurk effect [48], where incongruent facial and
vocal phonetic information results in an intermediate
percept, provides a dramatic illustration of this phenom-
enon. Neuroimaging studies have again mostly investi-
gated the integration of phonetic information. The
activation of a left posterior STS region during the
perception of facial speech (lipreading) is generally
observed, with increased activity for conditions of bimodal
integration (e.g. [49,50]).

Less is known about the face—voice integration of
identity information. Shah and colleagues [51] used fMRI
to investigate the neural response to person familiarity
through both visual and auditory modalities. Subjects
were scanned while hearing voices or viewing faces
belonging to persons either unknown or personally
known. Processing of familiar faces and voices led to
greater activation of the retrosplenial cortex, close to the
precuneus activation found by von Kriegstein and col-
leagues for familiar voices [42].

Face and voice integration has also been studied in the
context of affective information processing. Dolan and
colleagues [52] investigated how the cortical response to
facial expressions of fear was modulated by simultaneous
presentation of voices in which prosody expressed happi-
ness or fear. They found effects of integration in the left
amygdala, in which activity was strongest when both faces
and voices expressed fear, and smallest for incongruent
happy-sad, facial-vocal pairs.

Together, these studies suggest that the integration of
speech, identity and affective information from faces and
voices involve different cortical regions; they again support
the idea that the neuronal processing of these three types
of information could be dissociated in similar ways for
voices as for faces (see Box 3).

Are voices ‘special’?

The debate on ‘Is speech special ?, that is, on whether or
not speech perception involves specialized, modular brain
mechanisms has generated much literature, and still
appears to be unresolved. Evidence for mechanisms
uniquely involved in speech perception (e.g. [53,54])
seems balanced by findings that categorization of pho-
nemes could be based on more general acoustic mechan-
isms also present in other animals [55,56]. We would like to
suggest that this question can be extended to affective and
identity processing in voice: does voice perception in
general involve specialized mechanisms not used for
other, non-vocal, sounds from the environment?
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This question is close to another active debate in
cognitive neuroscience: ‘Are faces special?”. On the one
hand, evidence from various sources suggest that face
processing recruits mechanisms not normally involved
in the processing of other objects. These results
include: behavioral evidence for greater disruption of
face than object processing by picture inversion (the
‘face inversion effect’ [57]); the observation of patients
with impaired face recognition (‘prosopagnosia’) despite
normal object recognition, or vice-versa [58]; electro-
physiological recordings in the macaque STS showing
cells with greater response to faces than other objects,
although in small proportion [59]; evidence for an
electrophysiological ‘N170’ negativity selective for faces
over occipito-temporal cortex [60,61], and neuroimaging
evidence for greater responses to faces than objects in
discrete cortical regions [62—64]. On the other hand,
some findings suggest that the above effects could be
related to the greater difficulty of face discrimination,
categorization and recognition tasks at a subordinate
level, compared with other object categories where
exemplars are much less similar to one another. For
example, cortical regions considered as ‘face-selective’
also respond to a lesser degree to non-face objects, and
they appear to be strongly activated by non-face
stimuli such as birds or cars in subjects with expertise
with those stimuli [65,66].

Voice-sensitivity in auditory cortex

Some of the arguments used in the face debate are now
being transposed to the voice domain. In particular, recent
results suggest the existence of cortical regions selective to
sounds of voice. Belin and colleagues [67] used fMRI to
measure brain activity during passive stimulation with a
large variety of natural sounds grouped in blocks of either
vocal or non-vocal sounds. Most parts of the auditory
cortex responded similarly to vocal and to non-vocal
sounds. However, in each subject discrete regions of
auditory cortex were found that exhibited a greater
response to the vocal sounds — no part of cortex showed
the reverse pattern. These voice-sensitive cortical regions
showed high selectivity, because their response to vocal
sounds was significantly greater than to control sounds
with similar low-level structure such as speech-envelope
noise or scrambled voices. These regions were consistently
located along the superior bank of the STS (see Figure 2).
Interestingly, the group-average map of cortical activity
suggested greater voice-selectivity in the right hemi-
sphere, which could be related to the fact that half of the
vocal stimuli consisted of non-speech vocalizations [67].
Only regions in the right anterior STS showed a greater
response to non-speech vocal sounds than to their
scrambled counterpart, providing additional evidence
that these regions could be involved in processing
paralinguistic information in voice [68].

Recent EEG and MEG studies also addressed the
question of voice specificity. Levy and colleagues used
ERPs to compare the response evoked by sung voices and
tones played by different musical instruments. No
difference between the voices and instruments was
observed for the N1 component; however a ‘voice-specific
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Figure 2. Voice-sensitive cortical activity. (a) Spectrograms (x: time; y: frequency;
color indicates energy) of examples of non-vocal (top) and vocal (bottom) sounds
used in [67]. Note their similar apparent complexity. (b) Rendering on a recon-
structed cortex of cortical regions showing greater response to vocal compared
with non-vocal sounds in 8 subjects, located in the anterior part of the STS.

response’ (VSR) could be observed, peaking at around
320 ms after stimulus onset and strongest on the right
side. They suggested that this component, different from
the ‘novelty P300’, might reflect allocation of attention
related to the salience of voice stimuli [69,70]. Gunji and
colleagues, in a MEG study using similar stimuli [71], also
found no difference in the N1 evoked by voices and
instruments respectively, but found a sustained field with
greater source strength for the voice stimuli between 300
and 500 ms after onset. They did not observe, however, a
magnetic counterpart of the VSR found with ERP, which
they attributed to the radial orientation of the sources
involved or to the movie viewing condition used in the
MEG but not the ERP study. An open question, that could
be addressed by future studies using high-density ERPs or
combined fMRI and ERPs, is whether the VSR might
originate in STS regions. It will also be interesting to test
whether an earlier VSR, closer in time to the N170
observed for faces, will be observed with more varied sets
of vocal and non-vocal stimuli such as those used in face
perception research.

Thus, these studies provide evidence for cortical mech-
anisms activated by vocal stimuli more than by other non-
vocal stimuli. But as with face-specific responses of visual
cortex, these responses could be interpreted as a modular
response to the category of vocal sounds, or as reflecting
discriminations and categorization between highly similar


http://www.sciencedirect.com

134 TRENDS in Cognitive Sciences Vol.8 No.3 March 2004

Box 4. Questions for future research

e Would STS activations also be observed for expert categorization
at a subordinate level of other sound categories ?

e Are voices more ‘attention-grabbing’ than other sounds, whether
they contain speech or not?

e To what extent does our voice perception system allow us to
extract identity and affective information from vocalizations from
other species, such as cats and dogs?

e What are the perceptual primitives of voices? Can voices be
represented with a small number of independent dimensions?

e Are there people with ‘congenital phonagnosia’, that is, a
developmental inability to recognize voices? (Landis, pers.
commun.).

exemplars of a sound category, and might therefore also
be present for expert categorization of other sounds
(see Box 4).

Conclusion

Recent neuroimaging studies suggest that different
cortical regions are involved in processing different types
of vocal information, with an important role of regions
along the STS. They suggest a model of functional
organization similar to those proposed for face perception,
where linguistic, affective, and identity information are
processed in partially segregated cortical pathways.
Further work — possibly using paradigms and tools
inspired from the face processing literature — will be
necessary to test the predictions of this model, and confirm
or refute the analogy to face perception.
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