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The ability to create and enjoy music is a universal human trait and plays an important role in the daily life of most cultures. Music
has a unique ability to trigger memories, awaken emotions and to intensify our social experiences. We do not need to be trained
in music performance or appreciation to be able to reap its benefits�already as infants, we relate to it spontaneously and
effortlessly. There has been a recent surge in neuroimaging investigations of the neural basis of musical experience, but the way
in which the abstract shapes and patterns of musical sound can have such profound meaning to us remains elusive. Here we
review recent neuroimaging evidence and suggest that music, like language, involves an intimate coupling between the
perception and production of hierarchically organized sequential information, the structure of which has the ability to
communicate meaning and emotion. We propose that these aspects of musical experience may be mediated by the human mirror
neuron system.
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It is a common experience to be transported back through

time when we hear one of our favorite songs: to the summer

vacation with our best friend; to the school disco; to that

cross-country drive; to our first teenage crush. Music is a

universal human trait, offering the mind a unique mode of

communication, a means of evoking or stimulating different

emotions and, most importantly, the kind of experience that

can unite and define social groups, generations and cultures.

People around the world use song and dance to tell stories,

to conduct rituals, to teach children about their history and

culture, to entertain and to relax. We relate to music

spontaneously and effortlessly, and often with an emotional

response. Yet the nature of such musical experiences is

extremely complex; the processing and representation of

music involves a multitude of perceptual and cognitive

mechanisms that have yet to be fully described. It has

recently been proposed that music is best understood as

a form of communication in which acoustic patterns and

their auditory representations elicit a variety of conscious

experiences (Bharucha et al., 2006). Here we review some

recent evidence on the neural basis of musical processing in

relation to two other modes of communication, language

and action, both of which have been described as supported

by the human mirror neuron system. We hypothesize that

the powerful affective responses that can be provoked by

apparently abstract musical sounds are supported by this

human mirror neuron system, which may subserve similar

computations during the processing of music, action and

linguistic information.

The mirror neuron system has been proposed as a

mechanism allowing an individual to understand the

meaning and intention of a communicative signal by

evoking a representation of that signal in the perceiver’s

own brain. Neurons with these ‘mirror’ properties have been

described in both area F5 of the premotor cortex and in

parietal area PF of the macaque brain (Rizzolatti and

Craighero, 2004). These visuomotor neurons discharge both

when the monkey performs an action and when it observes

another individual perform a similar action (di Pellegrino

et al., 1992; Gallese et al., 1996; Fogassi et al., 2005). It has

been suggested that parietal mirror neurons have the special

property of coding motor acts as belonging to an action

sequence, predicting the intended goal of a complex action

(Fogassi et al., 2005). In addition, subsets of premotor

mirror neurons have been shown to have audiovisual

properties, and are able to represent actions independently

of whether they are performed, heard or seen (Kohler et al.,

2002). Thus, area F5 of the ventral premotor cortex, and area

PF of the inferior parietal lobule in the monkey are

considered to form a fronto-parietal mirror neuron system

critical to action understanding and intention attribution
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(Rizzolatti et al., 2001; Rizzolatti and Craighero, 2004;

Fogassi et al., 2005).

A similar fronto-parietal network, including the posterior

inferior frontal gyrus (BA 44), adjacent ventral premotor

cortex and the inferior parietal lobule (BA 40), appears to

subserve related functions in the human brain (Rizzolatti

and Craighero, 2004). A large number of neuroimaging

studies have now shown that such a human fronto-parietal

mirror neuron system is engaged during action observation

and imitation (Fadiga et al., 1995; Hari et al., 1998; Iacoboni

et al., 1999; Johnson-Frey et al., 2003; Molnar-Szakacs et al.,

2005, 2006; Aziz-Zadeh et al., 2006;). The proposed frontal

mirror neuron region has also been shown to be involved in

understanding the intentions behind the actions of others

(Iacoboni et al., 2005). In addition, there is some recent

evidence to suggest that, as in the monkey, the human

mirror neuron system shows sensitivity to auditory stimuli

related to actions (Aziz-Zadeh et al., 2004; Buccino et al.,

2005). Thus, a range of current evidence suggests that a

human fronto-parietal mirror neuron system shows proper-

ties consistent with the ability to represent the actions and

intentions of others, across modalities, by recruiting one’s

own motor system. For the purposes of this review, we will

refer to this action observation/execution matching system

as the ‘human mirror neuron system’.

To date, parallels between the activity of mirror

neurons recorded in the monkey and human neuroimaging

findings are established primarily in the domain of action

observation/execution. However, functions of this neural

system have recently been linked to several high-level human

cognitive functions such as empathy (Carr et al., 2003;

Gallese, 2003b; Dapretto et al., 2006), theory-of-mind

(Williams et al., 2001, 2006) and self-other discrimination

(Uddin et al., 2005, 2006). A notion of shared representa-

tions for production and perception of speech has been

previously proposed and formalized in the Motor Theory of

Speech Perception (Studdert-Kennedy et al., 1970; Liberman

and Mattingly, 1985; Liberman and Whalen, 2000). This

theory holds that two-way communication is based on

shared representation and occurs when sender and perceiver

co-activate this representation. Mirror neurons may provide

the neural basis of this shared representation between sender

and perceiver, which Liberman postulated as the necessary

prerequisite for any type of communication (Liberman and

Mattingly, 1985; Rizzolatti and Arbib, 1998). Gallese (2003a)

has also proposed that this perception-action link is

supported by an automatic and non-conscious simulation

mechanism, whereby one uses the same neural resources

to represent and understand the actions of others as to

perform one’s own actions (Gallese, 2003a). Such a neural

system allows one, in essence, to experience the mind of the

other, or as the expression would have it, to ‘walk in

another’s shoes’.

How might this system for action representation be

involved in the experience of music? Until the recent

advance of recorded music and synthesized sounds (relative

to human evolution), music has always been associated with

motor activity. From drumming to singing to virtuosic

sitar playing, the production of music involves well-

coordinated motor actions that produce the physical

vibrations of sound. The experience of music thus involves

the perception of purposeful, intentional and organized

sequences of motor acts as the cause of temporally

synchronous auditory information. Thus, according to

the simulation mechanism implemented by the human

mirror neuron system, a similar or equivalent motor network

is engaged by someone listening to singing/drumming as the

motor network engaged by the actual singer/drummer;

from the large-scale movements of different notes to the

tiny, subtle movements of different timbres. This allows for

co-representation of the musical experience, emerging out of

the shared and temporally synchronous recruitment of

similar neural mechanisms in the sender and the perceiver

of the musical message. This shared musical representation

has a similar potential for communication as shared

language or action.

The connection between music and motor function

is evident in all aspects of musical activity�we dance

to music, we move our bodies to play musical instruments,

we move our mouths and larynx to sing. A number of

recent neuroimaging studies have shown that specific

musical experience or expertise can modulate the activity

within the fronto-parietal mirror neuron system (Haslinger

et al., 2005; Bangert et al., 2006), as can dancing experience

(Cross et al., 2006) and music-related motor learning

(Buccino et al., 2004; Calvo-Merino et al., 2004). Other

recent studies have relied on the coupling of perception and

action in musical experience to investigate the neural

organization of such complex behaviors as sequence

learning and temporal production (Janata and Grafton,

2003).

Music, of course, is a communicative signal comprised of

patterns whose performance and perception are governed by

combinatorial rules, or a sort of musical grammar (Sloboda,

1985); the auditory signal is not simply organized in

consecutive sequential elements, but involves hierarchical

relationships. Hierarchical organization is the process of

integrating lower-level units to form more complex higher-

level units and in the case of music this involves

combinations of both sequential and simultaneous elements

such as notes, rhythms, phrases, chords, chord progressions

and keys to form an overall musical structure (Lerdahl and

Jackendoff, 1983). Human language is a communicative

signal with a similar hierarchical structure, in which

phonemes are combined to form words, phrases and

sentences up to the discourse level of speech structure

(Hockett, 1960). Such principles of hierarchical organization

also underlie other complex abilities such as problem-solving

(Newell and Simon, 1972) and tool-use (Greenfield, 1991;

Greenfield et al., 2000).
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Hierarchical processing in action and in linguistic grammar

have been found to show both behavioral and neural

similarities in developmental investigations, psycholinguistic

research, cross-species comparison and neuroscientific studies

(Greenfield, 1978, 1991, 2005). Grossman (1980) used

evidence from aphasic patients to suggest that Broca’s area

is the common neural substrate for processing hierarchy in

both language and action. He found that Broca’s aphasics

who lack hierarchical organization in their syntactic

production were also impaired in recreating hierarchically

organized tree structures used by Greenfield and Schneider

(1977). In contrast, fluent aphasics, who have hierarchically

organized (but semantically empty) speech were able to

reproduce the hierarchical structure of the models

(Grossman, 1980). In the musical domain, damage to this

area of the posterior inferior frontal gyrus can lead to the

conjoint impairments of aphasia and amusia�a selective

problem with perceiving and interpreting music

(Alajouanine, 1948). Recent evidence has also shown that

aphasic patients with syntactic comprehension difficulties in

language exhibit similar syntactic difficulties in the domain

of musical harmony (Patel, 2005).

Neuroimaging studies of language function and studies

of sensory-motor integration have shown evidence of an

overlap between the brain regions involved in linguistic

processing and regions comprising the human mirror neuron

system (Rizzolatti and Arbib, 1998; Arbib, 2005). Recent

neuroimaging studies have also implicated Broca’s area

and its right hemisphere homologue in the perception

and representation of hierarchically organized human

behavior (Koechlin and Jubault, 2006; Molnar-Szakacs

et al., 2006). Furthermore, it has been proposed that parallel

functional segregation within Broca’s area during language

and motor tasks may reflect similar computations used

in both language and motor control (Molnar-Szakacs et al.,

2005). In accordance with these findings, neuroimaging

studies have shown that Broca’s area and its right-hemisphere

homologue supports the processing of syntax in both

language (Dapretto and Bookheimer, 1999; Friederici et al.,

2000a, 2000b) and music (Patel et al., 1998; Maess et al., 2001;

Koelsch et al., 2002; Patel, 2003; Tillmann et al., 2003; Koelsch

and Siebel, 2005); see Figure 1. In parallel with the

developmental literature on action and language, infants

also seem to show implicit knowledge of principles of

hierarchical organization for music, for example they are

able to distinguish different scales and show preferences for

consonant over dissonant tonal combinations (Trehub,

2003).

The proposal of a common neural substrate for music,

language and motor functions is supported by evidence from

studies of language disorders. For example, it has been

shown that children with dyslexia exhibit specific timing

difficulties in the domain of music (Overy et al., 2003),

motor control (Fawcett and Nicolson, 1995; Wolff, 2002)

and language (Tallal et al., 1993; Goswami et al., 2002) and

that music lessons with dyslexic children can lead to

improvements in language skills (Overy, 2003). It has also

been found that patients with severe non-fluent aphasia can

benefit from Melodic Intonation Therapy (MIT), a highly

imitative speech therapy technique based on singing. The

technique has been shown to lead to speech improvements

(Sparks et al., 1974), coupled with changes in the neural

resources recruited during speech (Belin et al., 1996; Overy

et al., 2005).

Fig. 1 Model of the possible involvement of the human mirror neuron system in representing meaning and affective responses to music. One aspect of the experience of music
involves the perception of intentional, hierarchically organized sequences of motor acts with temporally synchronous auditory information. Auditory features of the musical signal
are processed primarily in the superior temporal gyrus (STG) and combined with synchronous structural features of the ‘motion’ information conveyed by the musical signal in the
posterior inferior frontal gyrus (BA 44) and adjacent premotor cortex. The anterior insula forms a neural conduit between the mirror neuron system and the limbic system,
allowing this information to be evaluated in relation to one’s own autonomic and emotional state contributing to a complex affective response mediated by the limbic system.
Possible feedback mechanisms may influence the subsequent processing of the musical signal at the immediate and more long-term timescales. The shared recruitment of this
neural mechanism in both the sender and the perceiver of the musical message allows for co-representation and sharing of the musical experience. Music notes from ‘The Lady
Sings the Blues’ by Billie Holiday and Herbie Nichols.

Music andmirror neurons SCAN (2006) 237

 by guest on O
ctober 19, 2010

scan.oxfordjournals.org
D

ow
nloaded from

 

http://scan.oxfordjournals.org/


The role of the human mirror neuron system, Broca’s area

in particular, in mediating the sensory-motor transforma-

tions underlying imitation is already well-established

(Iacoboni et al., 1999; Koski et al., 2002, 2003; Heiser

et al., 2003; Molnar-Szakacs et al., 2005). The success of

music/speech therapy methods such as MIT might thus be

due, at least in part, to the fact that their imitative elements

involve a direct transfer of sensory information to a motor

plan, leading to a strong recruitment and co-activation of

brain regions involved in the perception and production of

both music and language.

The range of research findings discussed so far lends

support to the hypothesis that the perception of action,

language and music recruit shared neural resources, which

appear to be located in brain regions comprising the human

mirror neuron system. Based on this evidence, we propose

that humans may comprehend all communicative signals,

whether visual or auditory, linguistic or musical, in terms of

their understanding of the motor action behind that signal,

and furthermore, in terms of the intention behind that

motor action. The expressive nature of any human action or

vocalisation sends a signal of the intentional and emotional

state of the executor, such that even footsteps can be

correctly interpreted as conveying simple emotions (such as

sad, happy, angry or stressed) (de Gelder, 2006). Thus, as a

sentence or a musical phrase can be used to express an

individual’s semantic intention or emotional state, a listener

can understand the intended expression of the sentence

or melody, via the perceived ‘motion’ of the signal. Since the

acoustic nature of music can convey pure, non-referential

‘motion’ in pitch-space and time, it can thereby convey

complex and subtle qualities of human ‘e’motion, using

varying complexities of structural hierarchy.

Indeed, one of the defining features of music is its ability

to induce an emotional response in listeners (Gabrielsson,

2001) and one of the main reasons people give for listening

to music is to experience or modulate their emotional state

(Sloboda and O’Neill, 2001). Emotional responses to music

are present in early life and across cultures (Balkwill and

Thompson, 1999), indicating that the ability to perceive

emotions in music may be innate (Zentner and Kagan, 1996;

Trevarthen, 1999). Numerous measures of autonomic

arousal have been used to investigate the emotion-inducing

effects of music. Skin conductance responses appear to be

useful indicators of musically induced emotional arousal

(VanderArk and Ely, 1992, 1993), and ‘chills’ (goosebumps)

can be elicited when participants are allowed to select music

they find arousing (Panksepp, 1995; Gabrielsson, 2001).

Neuroimaging studies of affective responses to music have

revealed the involvement of a network of paralimbic and

neocortical regions, including frontal pole, orbitofrontal

cortex, parahippocampal gyrus, superior temporal gyrus/

sulcus, cingulate and the precuneus (Blood et al., 1999;

Blood and Zatorre, 2001; Koelsch et al., 2005; Menon and

Levitin, 2005; Koelsch et al., 2006). These regions correspond

well to brain regions previously associated with processing

emotional states and evaluating reward, particularly in

socially relevant cognitions (Adolphs, 1999, 2001, 2003;

Adolphs et al., 2000).

Emotion, especially as communicated by the face, the

body and the voice is an active motor process. Emotion and

action are intertwined on several levels, and this motor-

affective coupling may provide the neural basis of empathy

(Carr et al., 2003; Leslie et al., 2004)�especially the aspect of
empathy that requires no intermediary cognitive process, but

rather, is our automatic and immediate ‘motor identifica-

tion’ or inner imitation of the actions of others (Lipps, 1903;

Gallese, 2003a). The chameleon effect, whereby empathic

individuals exhibit non-conscious mimicry of the postures,

mannerisms and facial expressions of others provides strong

support in favor of this theory (Chartrand and Bargh, 1999).

There is also recent neuroimaging evidence that the anterior

insula, the right amygdala and mirror neuron areas in the

posterior inferior frontal gyrus, show enhanced activity

during imitation of emotional facial expressions vs simple

observation, providing additional support for the role

of sensorimotor-affective coupling in understanding the

emotions of others (Carr et al., 2003). In addition, Adolphs

and colleagues have shown that in a group of lesion patients,

those with a lesion of the amygdala and the sensorimotor

cortex performed the worst when asked to name or rate

facial expression of emotion (Adolphs et al., 2000). Thus, it

appears that the mirror neuron system is involved not only

in the intersubjective representations of actions but also in

emotion�representations that allow us to feel connected

with other agents.

It has been suggested that the perception of emotion in

music may arise in part from its relation to physical posture

and gesture (Davies, 1994; Jackendoff and Lerdahl, 2006).

It has also been shown that expressive music can induce

subliminal facial expressions in listeners (Witvliet and Vrana,

1996), and these in turn may induce subjective and

physiological emotional expressions (Ekman et al., 1983).

As posture, gesture and facial expressions are important

implicit cues in social communication, one can easily

imagine that ‘musical gesture’ can have similar effects in

communicating emotions. Two regions, including the

posterior inferior frontal gyrus and the anterior insula are

commonly activated during musically evoked emotional

states (Koelsch et al., 2005, 2006; Menon and Levitin, 2005).

These two structures may hold the key to understanding

how the brain uses a simulation mechanism to represent

emotional states evoked by musical experience. As described

above, the posterior inferior frontal gyrus (BA 44) is the

frontal component of the human fronto-parietal mirror

neuron system. With its ability to link perceptual and

behavioral representations of a stimulus during the percep-

tion of emotionally arousing music, the mirror neuron

system may simulate an emotional state in the listener

(Gridley and Hoff, 2006).
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The anterior insula may also support neural representa-

tions for subjective autonomic states, including bodily states

such as pain and hunger, as well as more subtle states

such as perception of heart rate and emotional awareness

(Craig, 2002, 2003, 2004; Critchley et al., 2004). Anatomical

data shows that the insular lobe has reciprocal connections

with the limbic system as well as with posterior parietal,

inferior frontal and superior temporal cortex (Augustine,

1996). Through its connection to regions of motor signifi-

cance, the anterior insula has been proposed to serve as the

neural relay station between the human mirror neuron system

linking perception and action and the limbic system involved

in processing emotions (Carr et al., 2003). Thus, in the case of

music, the human mirror neuron system and the limbic

system may communicate through the insula to provide an

automatic representation of the musical stimulus (Figure 1).

In conclusion, we propose here that in its ability to

integrate and represent cross-modal information, the mirror

neuron system may provide a domain-general neural

mechanism for processing combinatorial rules common to

language, action and music, which in turn can communicate

meaning and human affect. Although it is yet to be

determined which specific aspects of processing linguistic,

musical or motor syntax may recruit frontal mirror neuron

regions, the emerging picture from the literature suggests

that the mirror neuron system provides a neural substrate

for representing infinite combinations of hierarchical

structures, a computation that may underlie more general

cognitive abilities. There is also evidence that perhaps this

region may be the source of predictive models of upcoming

events in sequential processing, a feature also common to

language, music and action (Molnar-Szakacs et al., 2005;

Zatorre and McGill, 2005).

While the evolutionary advantage of musical ability is

still under debate (Hauser and McDermott, 2003), there is

growing evidence that music plays an role in cognitive

development, emotion regulation and social interaction

(Trevarthen, 1999; Juslin and Sloboda, 2001). We propose

that the human mirror neuron system may subserve some of

these effects, linking music perception, cognition and

emotion via an experiential rather than a representational

mechanism. A review of the literature on musically induced

emotions provides support for our proposal that music can

invoke motor representations of emotions by recruiting the

insula, a neural relay between the limbic and motor systems.

Action, language and music appear to share neural resources,

and we have proposed that common features governing the

use and function of these means of communication may be

represented within the fronto-parietal mirror neuron system.

Given that music, language and action (i) show specific and

relatively fixed developmental time courses (Trehub, 2001;

Greenfield, 2005); (ii) are ubiquitous means of social

communication in all human societies (Brown, 1991; Fiske,

2004); and (iii) share overlapping neural resources, it follows

that these human abilities may be related evolutionarily.

Ultimately, as further research tests some of the hypotheses

presented here, we will perhaps gain valuable insight into a

most fascinating aspect of humanity: the ability to express

oneself creatively.

‘‘You are the music, while the music lasts.’’

- T.S. Elliot.
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